If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-15x-72=0
a = 16; b = -15; c = -72;
Δ = b2-4ac
Δ = -152-4·16·(-72)
Δ = 4833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4833}=\sqrt{9*537}=\sqrt{9}*\sqrt{537}=3\sqrt{537}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{537}}{2*16}=\frac{15-3\sqrt{537}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{537}}{2*16}=\frac{15+3\sqrt{537}}{32} $
| 3x+11=5x-9=180 | | 37.8=3x+11 | | 8x–6√x–5=0 | | 11x-10=80=11x-10 | | 11x-10=11x-10=80 | | 11x-10=11x-10 | | 0,4x+0,2x+8+16-x=0 | | 5^x=11 | | 8(s+3)=-70 | | M2-10m+25=0 | | 13x-2/2x+1=4/3 | | 3d2+5d-6=0 | | 13x-2/2x+1=4Q | | 2+4+4x15=150 | | 3x+18=28−2x | | (x^2+x-6)/(x+1)=0 | | 9x+30=5x+18 | | 5x+3x+7=10x-8 | | (x)=8⋅x+5 | | 6t−3=7t−8 | | 3x^2-120x=0 | | -2x-1=-5x+23 | | -2x-15=-4x-3 | | 9x-1=6x+14 | | 8x+16=x-12 | | -x-2=x-16 | | -5x-2=-x-10 | | -7x-9=-3x+11 | | 2(3m+2)18=5m | | 24-7x=3,x= | | Y*y(16-y)=360 | | 3z-1÷5=3+z÷7 |